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ABSTRACT 
Although  the  interval  mapping  method is widely  used for mapping  quantitative  trait  loci  (QTLs), it is 

not very well  suited  for  mapping  multiple  QTLs. Here, we present  the  results of a computer  simulation 
to study the  application of  exact  and  approximate  models  for  multiple  QTLs.  In  particular, we focus  on 
an  automatic  two-stage  procedure  in  which  in  the first stage “important” markers  are  selected in multiple 
regression  on  markers.  In  the  second  stage a QTL is moved  along  the  chromosomes by using  the  pre- 
selected markers as  cofactors,  except for the  markers  flanking  the  interval  under  study. A refined  pro- 
cedure  for cases with  large  numbers of marker  cofactors is described.  Our  approach will be  called MQM 
mapping,  where MQM is an acronym for “multiple-QTL models” as well  as  for “marker-QTLmarker.”  Our 
simulation  work  demonstrates  the  great  advantage of  MQM mapping  compared  to  interval  mapping in 
reducing  the  chance of a type I error ( L e . ,  a QTL is indicated  at a location  where  actually  no  QTL is 
present) and in reducing the chance of a type  I1 error ( i . e . ,  a QTL is not detected). 

T HE advent of maps of molecular markers enables 
geneticists to detect  and  map individual loci  affect- 

ing quantitative traits ( c f .  PATERSON et al. 1988). In the 
ideal case  all genetic variance of the trait is explained by 
detected quantitative trait loci (QTLs). In practice a 
number of QTLs may be missed (a type I1 error)  and  at 
the same time a  number of  false  positives  may occur, 
indicating QTLs at  map positions (or regions) where 
actually no QTLs are  present (a type I error).  The actual 
balance between the cost of  false  positives and the ben- 
efit of detected QTLs depends  on  the aim  of the ex- 
periment (e.g., map-based cloning or introgression 
breeding). Nevertheless, one often strives for keeping at 
least the  chance of a type I error below 5%. Therefore, 
the QTL mapping  method used should keep the  chance 
of a type I error below 5%, but  at  the same time it should 
minimize the  chance of a type I1 error.  The interval map- 
ping  method (LANDER and BOTSTEIN 1989) is  widely used, 
but it is  now generally recognized that  the  chance of a 
type I or a type I1 error is higher in interval mapping 
than it is in simultaneous mapping of multiple QTLs ( cf. 
HALEY and KNOTT 1992; MARTINEZ and CURNOW 1992; 
JANSEN 1993b).  This has motivated theoretical research 
for multiple QTL mapping  methods. Recently, JANSEN 

(1992,1993b) and JANSEN and STAM (1994) developed a 
unifjmg framework of exact and approximate models 
for multiple QTLs, from now on called MQM mapping. 
MQM is an acronym for “multiple-QTL models” but also 
for  “marker-QTLmarker” (which reflects the insertion 
of  QTLs between markers on  the genetic linkage map). 
The framework includes interval mapping and regres- 
sion on markers (COWEN 1989;  STAM  1991;  RODOLPHE and 
LEFORT 1993; ZENG 1993) and also includes their “hy- 
brid” in  which the  phenotype is regressed on a single 
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putative QTL in a given marker interval, and  at  the same 
time on a  number of markers located elsewhere on the 
genome. The rationale behind using markers as  cofac- 
tors is that these markers will eliminate the major part 
of the variation induced by nearby QTLs. Some simu- 
lation work (JANSEN 1993b) and  a practical application 
(JANSEN and STAM 1994) indicated that  the MQM m a p  
ping  method is computationally feasible and substan- 
tially more powerful than interval mapping. For the 
present  paper  a  computer simulation study was set up to 
study more thoroughly the chances of a type I or I1 type 
error in MQM mapping, and to compare MQM m a p  
ping with interval mapping. A number of  QTL configu- 
rations were studied by simulation, covering the most 
relevant multiple-QTL configurations; the results are 
presented and discussed. 

STATISTICAL  MODELS FOR MQM MAPPING 

In this section statistical aspects of MQM mapping  are 
summarized. For more details see JANSEN (1992,199313) 
and JANSEN and STAM (1994).  Further refinements to 
MQM mapping  are  proposed,  concerning  the testing for 
the presence of a putative QTL, and  concerning  the 
parameter estimation for  the case that many marker co- 
factors are used. 

The framework: We restrict ourselves to backcross 
progenies, but  the same method applies to other inbred 
or outbred progenies. Furthermore, we assume a  nor- 
mally distributed environmental error.  The  general 
model in MQM mapping is Y = m + xiat + E, where Y 
is the phenotypic trait, m is the  mean, a, are  the allele 
substitution effects  of individual loci and E is the  (en- 
vironmental) error; the summation is over all loci af- 
fecting the trait. The x, are indicator variables specifylng 
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the genotype. In a backcross progeny they can take two 
values: 0 or 1. The loci in the above expression can be 
one  or  more QTLs,  but-as an approximation-markers 
can be used as  well. Therefore,  the  model includes in- 
terval mapping (LANDER and BOTSTEIN 1989),  but also 
exact models for multiple QTLs (JANSEN 1992, 1993b; 

JANSEN and STAM 1994), multiple regression on markers 
(COWEN 1989;  STAM  1991; RODOLPHE and LEFORT  1993; 
ZENC 1993),  and  the hybrid between interval mapping 
and multiple regression on markers (JANSEN 199313) in 
which marker cofactors are selected prior to the analyses 
considering a QTL in each interval in turn.  Parameter 
estimation is based on  the simultaneous distribution of 
the genotype and phenotype;  the core of our  method is 
completion of any  missing genotypic (QTL  and  marker) 
information, which is embedded  in a general and simple 
EM algorithm to obtain maximum likelihood estimates 
of the model parameters (JANSEN  and STAM 1994).  In  the 
case  of exact models for multiple QTLs, this procedure 
makes simultaneous estimation of  QTL positions 
possible. 

Preselection  of marker  cofactors: Markers can be 
used in the regression to take over the role of nearby 
QTLs. STAM (1991) demonstrated  that in multiple re- 
gression the effect of a QTL is absorbed only by its  flank- 
ing markers, at least if the progeny size  is large; other 
markers are  then  redundant. Since the locations of the 
QTLs are generally unknown, the question is which 
markers have to  be used as cofactors in MQM mapping. 
A standard regression selection procedure  can  be used 
to select the  “important” markers. One such procedure 
is backward elimination of marker cofactors in multiple 
regression of the  phenotype on the markers. JANSEN 

(1993b) minimized Akaike’s information  criterion, 
AIC = -2 ( 2 3  - k )  , where 2 is the log-likelihood and k 
is the  number of free  parameters in the model. Here, we 
minimize -2 (3- 3k), i. e . ,  a more  stringent penalty for 
the number of free  parameters is used. In “ordinary” 
regression with adequate  degrees of freedom to estimate 
d ,  a penalty of k is equivalent to the use of (about)  the 
16% point of the F test for  the comparison of  two nested 
models, which differ only by the inclusion of one free 
parameter; a penalty of  3k  is equivalent to  the use of 
(about)  the 2% point (MCCULLAGH and NELDER 1989). 
At each step of the backward elimination process a 
marker is dropped, namely the marker which gives the 
largest decrease of the  criterion;  the process is stopped 
when no  further  reduction of the criterion can be 
achieved. In the  next stage (the actual mapping  stage), 
the selected markers will be used as cofactors. For 
proper marker selection a reasonable number of recom- 
binants between flanking markers is required (the larger 
the QTL effect, the fewer recombinants are  required). 
Because  of the  near collinearity of  closely linked marker 
cofactors, it makes little sense to use a very dense  map 
in a progeny of, say, 100 individuals. 

Very recently, ZENC (1994) presented a simulation 
study in which  all markers were used as cofactors, except 
for  the markers flanking the interval under study. He, 
however,  also suggested preselecting the markers which 
explain most of  the genetic variation in the  genome. 

Testing  for  the  presence of a  putative QTL: In MQM 
mapping  at each map location the log-likelihood SI for 
a single QTL in a given interval can be calculated and 
compared with the log-likelihood So of no QTL in the 
given interval, using in both models the same set of 
marker cofactors (or  the same set of  QTLs in other in- 
tervals when exact models for multiple QTLs are  used). 
The likelihood-ratio test statistic for  the presence of a 
putative QTL in a given interval is then expressed as the 
maximum of 2 ( S 1  - So) over the interval. The distri- 
bution of the test statistic for the presence of a QTL in 
a specific interval is not exactly  known.  However, when 
no QTLs are segregating, the asymptotic distribution is 
expected to be between the x: and xi distribution (TIT- 
TERINGTON et al. 1985). The latter distribution is justified 
by the difference in the  number of parameters (one for 
the allele substitution effect a of the putative QTL, and 
one for the location of the QTL in the marker interval). 
The former is justified by the fact that  the null hypoth- 
esis  is defined by the single constraint a = 0. LANDER and 
BOTSTEIN (1989) and VAN OOIJEN (1992) simulated the 
distribution of the test statistic.  Based on extensive  simu- 
lations these authors published appropriate thresholds 
for  the test statistic so that  the  chance of a false  positive 
occurring anywhere on the  genome is at most 5% (still 
under  the assumption that no QTLs are  segregating). 
We here suggest that these thresholds are also suitable 
for MQM mapping: they can be used when no QTLs are 
segregating, since in that case it is expected  that no  or 
only a very  few markers will be selected in MQM m a p  
ping. Moreover, these thresholds can also be used when 
QTLs are segregating, the effects  of  which are elimi- 
nated by marker cofactors in MQM mapping. One con- 
dition is, however, that  the  number of degrees of free- 
dom for estimating d is large enough (see below). 

Marker cofactors should not replace the putative QTL 
in the interval of current interest. It was decided to study 
a simple approach  to prevent this: for a given interval all 
selected markers are used as cofactors, except  the  ones 
flanking  the interval of current interest. We expect that 
this approach applies well  if marker selection is properly 
based on reasonable numbers of recombinants between 
flanking markers (see above). Otherwise, a general (but 
more  computer intensive) selection approach can be 
used (JANSEN 1993b): starting from the single-QTL 
model using all selected markers, it is  assessed  which 
nearby markers still may be  dropped  (those markers pre- 
viously explained the effect of the  QTL),  and which 
markers cannot  be  dropped  (these markers possibly 
absorb the effects  of other QTLs on the  current 
chromosome). 
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When the number of marker cofactors is large: In 
ordinary regression the  number of parameters esti- 
mated  from  the  data  should not be  too large when maxi- 
mum likelihood is used. Asymptotic relations such as the 
2 approximations do  not necessarily hold in the case  of 
large numbers of parameters. The main reason for this 
is the bias  of the maximum likelihood estimate of the 
residual variance. The usual bias adjustment of the es- 
timate of the variance is to multiply the estimate by 
N/ ( N  - p )  , where N is the  number of individuals and p 
is the  number of free  parameters used for modeling the 
relation between the  mean and explanatory variables. 
When comparing a sequence of (nested) models we 
have the  option of using a common estimate of variance 
for all models in the  sequence, or using separate esti- 
mates derived from  the fit of each model in turn (Mc- 
CULLAGH and NELDER 1989).  In “ordinary” regression 
analysis a single estimate of the variance obtained  from 
the most complex model is  usually considered. This es- 
timate of the variance is used for all models in the se- 
quence, which at  the same time guarantees  that  the test 
statistic  takes only positive  values ( c j  HALEY and KNOTT 

1992). This property  does not hold if for each model a 
separate bias-adjusted estimate of the variance is used. 
Here, we deal with mixture models instead of “ordinary” 
regression models, because of  missing QTL and marker 
observations (it is quite  common  that a small proportion 
of the  marker  data  are missing). Variable selection and 
bias adjustment of the maximum-likelihood estimate of 
the residual variance in mixture models is an  area  open 
to  research, probably because mixture models with 
many parameters did not occur before. Mixture analysis 
can be viewed  as “ordinary” regression with  missing  val- 
ues for one  or  more factors UANSEN 1992,1993a).  There- 
fore, it is natural to adapt  the  approach  for variable se- 
lection and bias adjustment in regression models to the 
case of mixture models. In MQM mapping with com- 
plete linkage maps we propose the use of the following 
heuristic three-step procedure: (1) obtain maximum- 
likelihood estimates for  the most complex model (usu- 
ally the  model  for regression of phenotype on all  mark- 
ers);  (2) adjust the estimate of the residual variance for 
bias; and (3) obtain maximum-likelihood estimates in 
the  sequence of models (in  the models for regression of 
phenotype on subsets of the markers during  the selec- 
tion process, or in single-QTL and no-QTL models with 
selected marker  cofactors),  keeping  the variance fixed 
at the value obtained from step 2. 

Following this approach,  the distribution of the test 
statistic for  the  presence of a QTL  in a specific interval 
is expected to be between the Fl,d.f, and 2F2,d,, distribu- 
tion rather  than between the x: and distribution, 
where d. f. are  the  degrees of freedom  for estimating u2 
(HALEY and KNOTT 1992).  Therefore,  appropriate 
thresholds  for  an  entire  genome  should also be func- 
tions of the  number of residual degrees of freedom. Of 

course, F and ,$ distributions are closely related if the 
number of residual degrees of freedom is large. 

SIMULATIONS 

For a number of specified configurations of QTLs and 
QTL effects, we studied the distribution of the test sta- 
tistic for  the presence of a putative QTL. These con- 
figurations include no QTL, a single QTL or two QTLs, 
the two  QTLs being unlinked, linked in repulsion ( i . e . ,  
with opposite sign effects) or linked in coupling phase 
( i . e . ,  with equal sign effects). Furthermore, we consid- 
ered small and large numbers of markers. In MQM map- 
ping with  many cofactors, a common and bias-adjusted 
estimate of the variance was used for all models accord- 
ing to  the  procedure described above.  See  Figures 1-9 
for  the description of the various settings. Putative  QTLs 
are detected via the following procedures: (a) by MQM 
mapping using (selected) markers as cofactors, (b) by 
MQM mapping with exact models for multiple QTLs, 
and  (c) by interval mapping. In all  cases we simulated by 
computer and according to the Mendelian segregation 
rules the genotypes and phenotypes of 100 individuals 
as if they had  been  produced by back-crossing  F, indi- 
viduals to one of the parents. For each genetic setting 
500 simulations were run. Marker distances were  as- 
sumed to be known and to be equal to the values used 
for simulation. For each genetic setting we plotted the 
simulated distribution of the test statistic in a given in- 
terval (the maximum of 2(Z1 - So) over  all map loca- 
tions in the given interval). The distributions turned  out 
to be markedly skewed. To have a better presentation we 
plotted the  square  root of the test  statistic.  Two  types  of 
simulation were run:  (a) simulations concerning con- 
figurations with no QTL in the interval of interest, aim- 
ing at a study  of the type I error,  and  (b) simulations with 
a QTL in the interval of interest, aiming at a study of the 
type I1 error. They are dealtwith in the  next two sections, 
respectively. 

Type I error 

The distribution of the test  statistic for  the presence 
of a putative QTL was simulated for a given marker in- 
terval,  in  which  actually no QTL is located. When no 
QTLs are segregating or when the effects  of QTLs are 
sufficiently eliminated, this distribution is expected to 
be between the x: and x: distribution. If the  number of 
degrees of freedom  for estimating u2 is small, this dis- 
tribution is expected to be between the F,,d.f, and 2F2,d,f. 

distribution. 
We  successively considered  the following situations. A 

single QTL is located on the same chromosome as the 
interval under study, or  on  another chromosome; or two 
QTLs in coupling phase are located on  the same chro- 
mosome, one  on  either side of the  marker interval of 
interest. We also considered how the distribution of the 
test statistic is af€ected by the  number of free parameters 
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FIGURE 1.-A study  of the type I error in  case a single  QTL 
is present on another  chromosome. Backcross  progenies of 
100 individuals  were  simulated.  Markers  are  numbered  from 
the left to the  right  on  each  chromosome.  The  question mark 
(?) indicates  the  marker  interval  under  study  in  which  the 
likelihood  for  the  presence of a putative  QTL  is  assessed. The 
symbols Q and A indicate  the  position of a QTL with  an  effect 
of  positive and  negative  sign,  respectively.  The  percentage 
(beside  the  chromosome)  indicates  what  percentage of the 
expected  total  phenotypic  variance is attributable to  the  ex- 
pected  (simultaneous)  genetic  variance of the QTLs on the 
given  chromosome.  The  finely  dashed  curves  indicate  the 
x: distribution  (left)  and  the x: distribution (right). The 
coarsely  dashed  curves  indicate  the Fl,17 distribution  (left)  and 
the 2F2,17 distribution (right). The solid  curves  indicate: 

I, interval (I) mapping; 
C(3, 4), MQM mapping  with  markers 3 and 4 as  cofactors 

(C) . Analogous  definition  for  other sets of marker  cofactors; 
S, MQM mapping  with  selected (S) markers  as  cofactors (but 

markers  flanking  the  interval under study are  not used as co- 
factors,  even  if  they  were selected); 

E, MQM mapping  with  exact (E) models  for  multiple  QTLs; 
A, MQM mapping  with two adjustments (A): (1) the  esti- 

mate of the  variance  in  the  most  complex  model  is  adjusted  for 
bias and, (2) the  variance  in  any other  model is fixed  at  the 
value obtained  from  the  most  complex  model; 

IA, combination of I and A; 
CA, combination of C and A, 
SA, combination  of S and A. 

to  be estimated from  the  data. Finally, we studied the 
maximum value  of the test statistic in an  entire  genome 
in absence of segregating QTLs. See Figures 1-5 for  the 
description of the QTL configurations. 

A single  QTL  present on another  chromosome: First, 
we studied the case that no QTL is present  in  the interval 
of interest, while a single QTL is present on another 
chromosome (Figure 1). In interval mapping the dis- 
tribution of the test statistic may be affected by an un- 
linked major QTL when the marker interval 1-2 is  wide 
(curve I) : the curve deviates from  the 2 distributions. In 

MQM mapping,  the  distribution of the test statistic is 
unaffected by the QTL when the markers 3 and 4  are 
used as cofactors (curve C (3,4) ) . It is  of course generally 
unknown where the QTLs are  and  therefore one does 
not know  which markers should be used as cofactors to 
absorb  them. The QTL has, however, a major effect and 
when marker selection was applied, markers 3 and 4 
were selected in almost all simulations (not shown). 
Therefore,  the curve for MQM mapping with selected 
markers as cofactors almost coincides with the curve 
C(3,  4). As the  expected  genetic variance of the QTL 
represents 90% of the  expected phenotypic variance, 
these simulations show the maximal influence of a single 
QTL on  the type I error in an interval on  another 
chromosome. 

A single  QTL  present on the same chromosome: 
Next, we studied  the case that  no QTL is present in the 
interval of interest, while a single QTL is present on  the 
same chromosome (Figure 2, a-d). Both in interval 
mapping and in MQM mapping  the  presence of a major 
QTL in  marker interval 2-3 has a very strong  influence 
on  the test statistic in  marker interval 1-2, even when the 
markers 2 and 3  are used as cofactors (curves I and  C(2, 
3), respectively, in Figure 2a). We also considered  the 
case that  a major QTL is not in  marker interval 2-3, but 
in  marker interval 3-4 (Figure 2b).  In interval mapping, 
the test statistic in  marker interval 1-2 is still  highly af- 
fected by the QTL (curve I  in Figure 2b) ; in MQM m a p  
ping however, it is unaffected when the markers 3 and 
4  are used as cofactors (curve C(3, 4) in Figure 2b).  In 
practice it is not apriorz known that,  for instance, a QTL 
is located in marker interval 3-4 and that  therefore 
marker  3 and 4  should  be used as cofactors to absorb  the 
effect of the QTL. When marker selection was applied, 
in almost all simulation runs  the two markers flanking 
the QTL were selected: marker 2 and 3  in Figure 2a, and 
marker  3 and 4 in Figure 2b. In  the first case the cor- 
responding curve S deviates even more  from  the x 2  dis- 
tributions  than  that curve C(2, 3) deviates from them, 
and in the second case curve S coincides with curve C (3, 
4) (S curves are  not  plotted). As the  expected  genetic 
variance of the QTL forms  the major part of the ex- 
pected phenotypic variance (go%), these simulations 
show the maximal influence of a single QTL on  the type 
I error in another interval on  the same chromosome. 

We also simulated the same configurations with a QTL 
with a  much smaller effect (Figure 2, c and  d) . In interval 
mapping, the test statistic is  still  highly affected by the 
presence of a QTL in  marker interval 2-3 (curve I in 
Figure 2c), or by the presence of a QTL in marker in- 
terval 3-4 (curve I in Figure 2d).  In  neither case  is the 
test statistic influenced  in MQM mapping when the 
markers 2-3 or 3-4 are used as cofactors (curves C(2,3) 
and  C(3, 4) in Figure 2, c and  d, respectively). When 
marker selection was applied, in many simulation runs 
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FIGURE 2.-A study of the  type I error in case a single QTL is present on the same chromosome (see Figure 1 legend). 

only one of the two markers  flanking the QTL  was  se- 
lected (marker 2 or 3 in  Figure  2c,  marker 3 or 4 in 
Figure 2d). Since  markers  flanking the interval of in- 
terest are not used as cofactors  when  applying  marker 
selection,  this  seriously  affects the test  statistic  in the case 
of a QTL in the interval adjacent to the interval of in- 
terest  (curve S in  Figure 2c). However,  when  an  addi- 
tional  marker  between the interval  of interest and 
the QTL  is  available, the test  statistic corresponding 
tomarker  selection is hardly  affected  (curve S in 
Figure 2d). 

Two linked QTLS in coupling phase: Then, we stud- 
ied the case  of  two linked QTLs  in coupling phase ( i .  e. ,  
with effects of equal size and equal  sign;  see  Figure 3). 

It is  well known that in  interval  mapping the test  statistic 
in this case  will often  be at its maximum in one of the 
intermediate intervals ( " I N E Z  and CURNOW  1992). 
This  can lead to the detection of a single QTL in the 
wrong  interval (a type I error). Therefore, we studied 
the effect  of both QTLs on the test  statistic  in the in- 
termediate  marker  interval 4-5. The effect of the second 
QTL  in  marker  interval  6-7 on the test  statistic for the 
first  QTL  in  marker  interval 2-3  is dealt with  in the next 
section  (aiming at a study  of the type I1 error). 

In MQM mapping, the distribution of the test  statistic 
for the presence of a putative  QTL  in  marker  interval 
4-5 is undected by the two QTLs  when the markers 2, 
3,6 and 7 are used  as  cofactors  (curve C(2,3,6,7)), and 
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FIGURE 3.-A study  of the I type error at an interval  between 
two QTLs in coupling phase (see Figure 1 legend). 

only  slightly affected when selected markers are used 
(curve S) . In interval mapping,  the test statistic takes very 
large values (curve I ) .  

The effect of the  number of  cofactors: Furthermore, 
we studied the effect of the  number of cofactors on the 
type I error in MQM mapping with  80 marker cofactors 
distributed over 16 other chromosomes (Figure 4). This 
figure shows that  the test statistic is seriously affected 
(curve C( 3-82)).  Therefore,  it is clear that  the  number 
of redundant cofactors should not be  too large in maxi- 
mum likelihood estimation. Bias adjustment of the es- 
timate of the variance could be a solution to this prob- 
lem and  therefore we reanalyzed the case, using the bias 
adjustment procedure described above. The distribu- 
tion of the test statistic for  the case  of  80 cofactors with 
the bias adjustment is between the F,,,, and 2 F 2 , , ,  dis- 
tribution (curve CA(3-82)), and so is the distribution of 
the test statistic when marker selection is combined with 
bias adjustment (curve SA). This confirms that  the bias 
adjustment works. 

The  maximum  value of the  test  statistic in an entire 
genome: Finally, we studied  the type I error in a genome 
with 40 markers distributed over 8 chromosomes (Fig- 
ure 5). In MQM mapping, we applied  the variable se- 
lection and bias adjustment  procedure, developed 
above for  the case  of  many marker cofactors (curve SA). 
No or only a very  few markers were selected (394 times 
no markers, 72 times one marker, 16 times two markers, 
9 times three markers, 8 times four markers and only 
once five markers; together 500 simulation runs).  The 
same case was reanalyzed using the interval mapping 
method (curve I ) .  The two distributions of the maxi- 
mum value of the test statistic in  the  entire  genome  are 
very close to each other.  This  demonstrates  that  the re- 
sults by LANDER and BOTSTEIN (1989) and VAN OOIJEN 
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FIGURE 4.-A study of the type I error in  case of many marker 
cofactors (see Figure 1 legend). 

CHR k , ? , ? , ? , ? ,  
( k  = 1-81 - = 20cM 

= I  
0, 
k- 
3 

E 0.8 
2 
O 
W 

+- < 
J 
3 
E 

2 0.6 

2 0.4 

0.2 

0 
I C  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
SQUARE ROOT OF TEST S T A T I S T I C  

FIGURE 5.-A study of the type I error in  an entire genome 
(see Figure 1 legend). 

(1992) can be generally used to choose a threshold  for 
the test statistic such that  the probability of a type I error 
is about 5%. Of course, the  methods differ with respect 
to  the estimation of 2, so that  at least small differences 
can be expected. Moreover, the thresholds from interval 
mapping  are less appropriate  for MQM mapping if there 
are only a few degrees of freedom for estimating u2. 
Further simulation should reveal the thresholds for 
these situations (see also  discussion below). 
Type I1 error 

The distribution of the maximum value  of the test 
statistic for  the presence of a putative QTL was simulated 
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FIGURE 6.-A study of the type I1 error in case of two 
unlinked QTLs (see Figure 1 legend). 

in an interval in  which a QTL  is actually segregating. We 
successively considered the following situations: another 
QTL is also segregating and  the two QTLs are  either 
unlinked, linked in repulsion, or linked in coupling 
phase. See Figures 6-9 for  the description of the QTL 
configurations. We studied  the effect which the second 
QTL has on  the test statistic for  the  presence of the first 
QTL.  We  say that  the QTL  is detected if the test statistic 
exceeds the  threshold at a significance level  of 5% for 
a lOOOcM genome. This means that we assume the simu- 
lated intervals to be part of a large genome. The value 
of this threshold is 2.4.2.1n( 10) - 11.05 (LANDER and 
BOTSTEIN 1989; LOD threshold = 2.4, see their Figure 4). 
The square  root of the threshold is equal  to 3.32. 

Finally, we also considered  the effect of  bias adjust- 
ment of the estimate of the variance and  the effect of a 
common estimate of the variance in sequences of 
models (see Figure 9). 

Two  unlinked QTIs: First, we studied  the case  of two 
unlinked QTLs (Figure 6). In interval mapping,  the first 
QTL in  marker interval 2-3  is detected with a chance of 
0.14 (curve I). In MQM mapping with markers 6 and 7 
as cofactors the first QTL  is detected with a chance of 
0.74 (curve C(6, 7)). In  general  the locations of the 
QTLs are unknown, so that markers to be used as co- 
factors should  be selected. In some cases marker 1 or 
marker 4 may be selected and used as cofactor. The 
markers 1 and 4 are linked to the first QTL and can also 
(partially) absorb the effect of this QTL. As a conse- 
quence,  the test statistic  takes the smaller values in these 
cases (lower tail of curve S in Figure 6). Nevertheless, the 
chance of detecting  the first QTL  is still 0.70 when se- 
lected markers are used. This demonstrates  that QTLs 
can be  detected  more powerfully by MQM mapping 
than by interval mapping (the chance of detection of the 
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FIGURE 7.-A study of the type I1 error in case of two linked 
QTLs in repulsion phase (see Figure 1 legend). 

first QTL  is 0.70 vs. 0.14, respectively). As the  expected 
genetic variance of the QTL forms the major part of the 
expected phenotypic variance (go%), these simulations 
show the maximal increase in power. 

MQM mapping with marker cofactors was also com- 
pared to MQM mapping with exact models for two 
QTLs. To that  order, a putative QTL, or  no QTL, was 
fitted in marker interval 2-3, while in either case a sec- 
ond QTL was fitted in marker interval 6-7 (curve E in 
Figure 6).  It is clear from Figure 6 that  the curves C (6, 
7) (or curve S) and E are still rather different. This 
means that a proportion of the genetic variation of the 
second QTL could not be eliminated by the  marker co- 
factors, due to recombinants between marker 6 (or 7) 
and  the second QTL. Thus, MQM mapping with exact 
models for multiple QTLs is sometimes much  more pow- 
erful than MQM mapping with marker cofactors. It is 
clearly beneficial to use exact models for those putative 
QTLs that have a major effect on  the trait (and the 
corresponding  marker cofactors can be dropped). 
Two linked  QTLs in repulsion  phase: Next, we stud- 

ied the case  of two linked QTLs in repulsion phase (with 
effects  of equal size but opposite sign; see Figure 7). In 
interval mapping,  the first QTL in marker interval 2-3 
is detected with a chance of only  0.42 (curve I), In MQM 
mapping with markers 4 and 5 as cofactors the first QTL 
is detected with a chance of 0.93 (curve C(4,5)). When 
only selected markers are used in MQM mapping (ex- 
cluding  the markers 2 and 3, which flank the interval 
under study),  the  chance of detecting  the first QTL in- 
creases even to 0.97 (curve s). The increase is due to the 
fact that  marker 4 sometimes partially absorbs the large 
effect of the first QTL, while marker 5 absorbs the large 
effect of the second QTL in marker interval 4-5; the 
value of the test statistic for  the presence of the first QTL 



R. C. Jansen 878 

z z 1  

F 
EEI 
2 
c 

0.6 
3 
0 
W 
5 
? 0.6 
< 
-J 
3 r 
3 
V 0.4 

0.2 

0 

I , ?Q , I I , V I  I 
1 2 3 4 5 6 7 8  

u = lOcM 50% 

0 2 4 6 8 
SQUARE  ROOT OF T E S T   S T A T I S T I C  

FIGURE 8.-A study of the type I1 error in case of two linked 
QTLs in coupling phase (see Figure 1 legend) 

then increases by dropping  marker 4 or 5. Our simula- 
tions demonstrate  that  linked QTLs in repulsion phase 
can  be  detected and separated  much  more powerfully by 
MQM mapping with marker cofactors than by interval 
mapping. 

MQM mapping with marker cofactors was also  com- 
pared to MQM mapping with exact models for two 
QTLs. To that  order, a putative QTL, or  no QTL, was 
fitted in  marker interval 2-3 while in  either case a second 
QTL is fitted in marker interval 4-5 (curve E). It is clear 
from Figure 7 that curve S and curve E are only  slightly 
different, Le. ,  MQM mapping with marker cofactors is 
almost as powerful  as MQM mapping with exact models 
for multiple QTLs, when QTLs are  in repulsion phase. 

Two QTLS in coupling  phase: Then, we studied  the 
case of two linked QTLs in coupling phase (with  effects 
of equal size and equal sign; Figure 8). In interval map- 
ping,  the test statistic for  the presence of the first QTL 
in marker interval 2-3 exceeds the threshold with a 
chance of 1 .OO (curve I). In MQM mapping with markers 
6 and 7 as cofactors the test statistic for the first QTL 
exceeds the  threshold with a chance of 0.92 (curve C(6, 
7)). Thus,  in  contrast  to  the results for the previous con- 
figurations, MQM mapping now leads to smaller values 
for the test statistic than interval mapping does. The 
reason for this is that  the effect of the first QTL, but also 
the major part of the effect of the second QTL in marker 
interval 6-7, are  absorbed when interval mapping of a 
single putative QTL is carried out in marker interval 2-3. 
In MQM mapping, the effect of the second QTL and 
that of the major part of the first QTL are absorbed by 
the  marker cofactors 6 and 7; the test statistic for marker 
interval 2-3 gives the likelihood for  the  presence of  mul- 
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FIGURE 9.-A study of the type I1 error in case  of  many 
marker cofactors (see Figure 1 legend) 

tiple linked QTLs, one being located in marker interval 
2-3, the other being located nearby markers 6 and 7. 
When only selected markers are used in MQM mapping 
(excluding markers 2 and 3, which flank the interval 
under study), the test statistic for  the presence of a QTL 
in marker interval 2-3 decreases slightly (the chance of 
detection of the QTL is 0.81;  curve S). The reason for 
this is that markers 1 or 4 were selected (as well) in some 
simulation runs. The  upper tail  of  curve S exceeds the 
upper tail  of  curves E and C(6, 7) slightly. The reason 
for this is that  either marker 6 or marker 7 was selected 
in a number of simulations (rather  than selecting mark- 
ers 6 and 7 simultaneously), thereby absorbing slightly 
less variation induced by the QTLs. 

MQM mapping with marker cofactors was also com- 
pared  to MQM mapping with exact models for two 
QTLs. To that  order, a putative QTL, or no QTL, was 
fitted in marker interval 2-3 while in either case a second 
QTL  was fitted in marker interval 6-7 (curve E). It is 
clear from Figure 8 that curve C(6, 7) and curve E are 
very  close;  however, the lower  tail of curve S deviates 
from  them.  Thus, not unexpectedly, MQM mapping 
with selected marker cofactors is not always as powerful 
as MQM mapping with exact models for multiple QTLs, 
when QTLs are  in coupling phase. 

The effect of the  number of  cofactors: Finally, we  will 
discuss the effect on the type I1 error of two changes to 
MQM mapping, namely the use  of a single estimate of 
the variance in a sequence of models and  the bias ad- 
justment of the estimate of the variance (Figure 9). First, 
the test statistic for  the presence of a putative QTL in 
marker interval 1-2 on chromosome 1 is considered 
without using marker cofactors for other chromosomes 
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(curves I and IA) . Figure 9 shows the distribution for  the 
test statistic when the usual maximum likelihood 
method is used (interval mapping with a separate esti- 
mate of the variance in the single and  the no-QTL 
model; curve I)  and also when the variance in the no- 
QTL model is  fured at the estimate from the single-QTL 
model (which was adjusted for bias;  curve IA). In this 
case the bias adjustment of the estimate of the variance 
will be almost negligible. The simulations clearly dem- 
onstrate  that  the use of a common estimate of the vari- 
ance  can lead to a more powerful QTL detection. 

Second,  the test statistic for  the  presence of a putative 
QTL in marker interval 1-2 is considered when 80 mark- 
ers (or a subset) on 16 other chromosomes are used as 
cofactors (curves CA(3-82) and SA). In such a case the 
estimate of the variance will be highly  biased and bias 
adjustment is needed.  The estimate of the variance in 
the most complex model (the model with all marker 
cofactors) was adjusted for bias as described above and 
we used this estimate as a common estimate in the subset 
selection procedure  and  in  the single-QTL and  the no- 
QTL models. The test statistic  takes much smaller values 
when all 80 markers are used as cofactors (curve CA(3- 
82)) than it does when no marker cofactors are used 
(curve IA) . This demonstrates  that  the 80 cofactors par- 
tially absorb  the effect of the QTL  in marker interval 1-2, 
even though these markers are located on  other chro- 
mosomes. However, when preselected marker cofactors 
are used (curve SA), the distribution of the test statistic 
is much closer to the one  found when no marker 
cofactors are used (curve IA) . 

DISCUSSION 

The simulations presented in this report  demonstrate 
the  great advantage of MQM mapping over interval 
mapping in controlling  the  chances of  type I and type 
I1 errors. The nice feature of MQM mapping is that 
marker cofactors are generally selected only in regions 
were QTLs are segregating. Because  of this feature, 
thresholds for the test statistic,  which  were obtained  for 
the case that no QTLs are segregating (LANDER and BOT- 
STEIN 1989; VAN OOIJEN 1992), are also suitable for MQM 
mapping. These  thresholds  can  be used when no QTLs 
are segregating, since in that case no  or only a few mark- 
ers will be selected; moreover, these thresholds can still 
be used when there  are QTLs segregating, the effects  of 
which are  eliminated by marker cofactors. One condi- 
tion is,  however, that  the residual degrees of freedom  for 
estimating the variance (or the dispersion parameter in 
generalized linear models) are  adequate. In such cases, 
the choice of the  appropriate  threshold  for  the test sta- 
tistic (so that  the  chance of a type I error is small, say 5%) 
can be made satisfactorily  in MQM mapping. Further 
simulation work  is required to reveal the  appropriate 
thresholds  for  the cases in which the  number of residual 
degrees of freedom is small. In interval mapping,  the 

threshold  for  the test statistic should  be used with cau- 
tion. It is known that a single QTL affects the test statistic 
in all intervals on  the same chromosome; the test  statistic 
often exceeds the threshold in a number of intervals on 
either side of the QTL, although one should not “detect” 
multiple QTLs in this region. In MQM mapping on  the 
other  hand,  the effect of a QTL diminishes rapidly when 
the distance between the QTL and  the interval of in- 
terest increases; a QTL often affects the test statistic  only 
in the two intervals adjacent to the  one of the QTL. 

The use  of marker cofactors reduces the  unexplained 
variance, so that  the  chance of a type I1 error in the case 
of unlinked QTLs  is generally smaller in MQM mapping 
than in interval mapping. Our simulations also demon- 
strate  that  the  detection and unraveling of the separate 
QTL effects  in the case  of linked loci is much easier in 
MQM mapping  than in interval mapping. Linked QTLs 
with opposite (and mutually neutralizing) effects are 
worst  case configurations for interval mapping: often no 
QTLs  will be  detected. Also, linked QTLs  with equal sign 
effects are a difficult configuration for interval mapping: 
often a single “ghost” QTL will be  detected somewhere 
between the two QTLs (MARTINEZ and CURNOW 1992). 
Again, our simulations make it clear that separation of 
such QTLs  is much easier in MQM mapping  than in 
interval mapping. 

In  our simulations the progeny size  is fixed at 100 
individuals, because we are involved  in real experiments 
of that size. For such cases, VAN OOIJEN (1992) demon- 
strated that  the  chance of detecting a specific  QTL is 
small, unless the QTL explains a large proportion of the 
phenotypic variance. Therefore, we considered QTL 
configurations for relatively high levels  of heritability. 
Our simulations make it clear that QTLs can be  mapped 
more powerfully by MQM mapping  than by interval 
mapping. In some of our simulations, the  gene was even 
of qualitative rather  than quantitative nature (Figures 1, 
2, a and b, and 6). We expect that a similar power  im- 
provement can be achieved when several  QTLs instead 
of one major gene  contribute  to  the genetic variation. 
Furthermore, we expect that similar results can also be 
obtained  for smaller levels  of heritability if the progeny 
size  is larger. On the  other  hand, in some types  of prog- 
eny such as recombinant  inbred lines, the heritability 
can be increased at will  by using more plants per line, 
leading to similar configurations. 

In  QTGmapping  experiments, large numbers of 
markers are commonly scored. In this paper we ad- 
dressed problems concerning fitting models with  many 
marker cofactors, and problems concerning selection of 
“important”  marker cofactors. The maximum-likeli- 
hood estimate of the residual variance will be biased 
when many markers are used as cofactors; the  number 
of parameters should not be  too large, preferably less 
than  22/nurnber of observations UANSEN and STAM 
1994). We propose a heuristic three-step procedure to 
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adjust for  the bias. Our simulations demonstrate  that  the 
bias adjustment works. This makes it possible to use 
many markers as cofactors in MQM mapping. However, 
the use  of redundant marker cofactors can lead to a loss 
of detection power. There  are two causes for this loss of 
detection power: (a) any redundant  marker which is 
used as a cofactor and which  is located nearby the QTL 
can also (partially) absorb the effect of the QTL; and  (b) 
the marker data  are generally unbalanced so that  the 
effect of a QTL can even be absorbed by redundant 
markers on  other chromosomes, especially in small 
progenies. Therefore, selection of the  “important” 
markers is beneficial. In  order  to exclude redundant 
markers, the selection criterion  should be stringent,  but 
not so stringent  that  important markers (those flanking 
the QTLs) are thereby excluded. JANSEN (1993b) pro- 
posed to maximize the log-likelihood minus the  number 
of free  parameters ( k )  in the model; this is equivalent 
to minimizing Akaike’s information  criterion AIC = 
-2 (3 - k) . In general, a penalty in the  range of k to 3k 
may provide plausible initial models (MCCULLAGH and 
NELDER 1989). In  the  present study, we use the  more 
stringent penalty of  3k. Our simulations demonstrate 
that  (a) this penalty is stringent, since no or only a few 
markers are generally selected in the case of no QTLs 
segregating and  (b) this penalty is still not too  stringent, 
since markers are selected for those QTLs that consid- 
erably affect the test statistic in their nearby region; the 
effects of such QTLs are satisfactorily eliminated by se- 
lected markers. Nevertheless, we feel that it is  still worth- 
while to study the  properties of the  method  for  other 
levels of the penalty in the  range from k to 3k. In par- 
ticular, we believe that  the penalty should depend  on  the 
aim of the  experiment. For instance, consider an ex- 
periment in which the aim is prediction of phenotypic 
value  followed by indirect selection via markers. In  the 
case  of prediction,  the penalty should be probably k 
rather  than 312 (MCCULLAGH and NELDER 1989). KNOIT 

and HALEY (1992) discuss another situation which 
should be investigated in more detail: a trait with a rea- 
sonable level  of heritability, which is affected by very 
many genes of small effect distributed throughout  the 
genome.  In  general,  the  benefit of using a small penalty 
is that  more variation induced by QTLs is eliminated. 
The cost is  loss  of power, since also (many) redundant 
markers are selected. Also, the  threshold for the test 
statistic should become more  stringent, when the pen- 
alty decreases. In  order to obtain thresholds as a func- 
tion of the penalty and also  as a function of the residual 
degrees of freedom,  further simulation work should be 
done. LANDER and BOTSTEIN (1989) and VAN OOIJEN 
(1992) studied  the  mapping of a single QTL with no 
markers as cofactors (equivalent to a penalty of 00) and 
ZENG (1994) studied the  mapping of a single QTL  with 
all markers as cofactors, except  the  ones flanking 
the interval under study (nearly equivalent to a penalty 
of 0). Simulation work by ZENG (1994; his Figure 1) 

demonstrated  that x $ ; ~ , ~  can be used as an  upper  bound 
for  the 1OOa% threshold  for  the overall test with M in- 
tervals, unless the  number of parameters is too large. 
It  should now be obvious that  the relation 
does not hold if the  number of parameters exceeds 
2vnumber of observations (JANSEN and STAM 1994). 
Our work,  however,  makes it possible to fit properly 
models with  many parameters.  It also indicates that 
2F2,d,t.a/M can be used as an  upper  bound, where d.f. are 
the  degrees of freedom for estimating 4. Finally, we 
note  that our selection criterion applies not only to “or- 
dinary” regression models, assuming a normal  error dis- 
tribution,  but also to generalized linear models (GLMs; 
MCCULLSCH and NELDER 1989). In comparing a sequence 
of  GLMs, a single  estimate of the dispersion parameter 
(a2 in “ordinary” regression)  based on the most  complex 
model is  usually considered. 

In  the  present  report we study an automatic MQM 
mapping  procedure. In practice the user may  wish to 
step in interactively. Some marker cofactors could be 
dropped  and  others could be added by hand. Also, exact 
models for multiple QTLs could be fitted for those pu- 
tative QTLs that have a major effect on  the trait (and  the 
corresponding  marker cofactors may be dropped).  One 
can still  take into  account  the effects  of  less important 
putative QTLs by using marker cofactors. Also, exact 
models for two (or more) QTLs could be fitted to sepa- 
rate  the effects of QTLs located in adjacent intervals. 
Such an interactive approach is  possibly the most accu- 
rate  and efficient way to  map multiple QTLs,  which is 
still  feasible. 
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